

Post-Quantum Cryptography Security Report

Survey Tag: API Gateway

Survey Date: January 15, 2025

Report Date: November 12, 2025

This report was generated by **Spice Labs Topographer**, which surveys your deployment artifacts using cryptographic analysis to identify quantum-vulnerable algorithms and reveal your true cryptographic security posture. For more information, visit www.spicelabs.io

Table of Contents

1. Executive Summary
2. Critical: Banned Algorithms
3. Warning: Mixed Cryptography
4. Transition Away: Deprecated by 2030
5. Compliant: Post-Quantum Ready

Executive Summary

BANNED ALGORITHMS:

2

NEEDS ATTENTION:

MIXED CRYPTOGRAPHY

2

TRANSITION AWAY (BY 2030)

2

POST-QUANTUM READY:

1

● Critical: Banned Algorithms

These libraries use cryptographic algorithms that are broken and can be cracked using conventional computers today (RC2, RC4, DES, 3DES, MD5, SHA-1, RSA-1024, etc.).

legacy-rsa

v1.2.3

Package URL

```
pkg:maven/com.sun.security/legacy-rsa@1.2.3
```

Cryptographic Algorithms

RSA-1024 (Asymmetric Encryption)

BANNED

SHA-1 (Hash Function)

BANNED

Found in Files

```
com/sun/security/auth/RSAEncryption.class
```

```
com/sun/security/crypto/CipherUtil.class
```

Assessment

This library uses RSA-1024 and SHA-1, both of which are explicitly banned due to known vulnerabilities to quantum attacks. RSA-1024 can be broken by Shor's algorithm, and SHA-1 has collision vulnerabilities. Immediate migration required.

LegacyCrypto.Utilities

v2.1.0

Package URL

```
pkg:nuget/LegacyCrypto.Utilities@2.1.0
```

Cryptographic Algorithms

DES (Symmetric Encryption)

BANNED

MD5 (Hash Function)

BANNED

Found in Files

LegacyCrypto.Utilities.dll

Assessment

Contains DES and MD5 which are cryptographically broken. These algorithms offer no security against modern attacks and are trivially breakable with quantum computers.

● Warning: Mixed Cryptography

These libraries contain both post-quantum safe and legacy cryptographic algorithms. Migration to post-quantum only is recommended.

bcprov-jdk18on

v1.78

Package URL

```
pkg:maven/org.bouncycastle/bcprov-jdk18on@1.78
```

Cryptographic Algorithms

SPHINCS+ (Digital Signature)

POST-QUANTUM

RSA-2048 (Asymmetric Encryption)

LEGACY

ECDSA-P256 (Digital Signature)

LEGACY

AES-256-GCM (Symmetric Encryption)

LEGACY

Found in Files

```
org/bouncycastle/pqc/crypto/sphincsplus/SPHINCSPlusEngine.class
```

```
org/bouncycastle/crypto/engines/RSABlindedEngine.class
```

```
org/bouncycastle/crypto/signers/ECDSASigner.class
```

```
org/bouncycastle/crypto/engines/AESEngine.class
```

Assessment

BouncyCastle's main provider library includes some post-quantum algorithms (SPHINCS+) alongside traditional cryptography (RSA-2048, ECDSA-P256, AES-256-GCM) for backward compatibility. While the post-quantum signatures are quantum-resistant, the legacy RSA and ECDSA components remain vulnerable to Shor's algorithm. Migration to bcpqc-jdk18on (pure post-quantum) is recommended.

BouncyCastle.Cryptography

v2.4.0

Package URL

```
pkg:nuget/BouncyCastle.Cryptography@2.4.0
```

Cryptographic Algorithms

LMS (Hash-Based Signature)

POST-QUANTUM

RSA-4096 (Asymmetric Encryption)

LEGACY

ECDH-P384 (Key Exchange)

LEGACY

Found in Files

```
BouncyCastle.Cryptography.dll
```

Assessment

The .NET port of BouncyCastle includes Leighton-Micali Signatures (LMS), a hash-based post-quantum signature scheme, but maintains extensive legacy cryptography for compatibility. RSA-4096 and elliptic curve algorithms (ECDH P-384) remain quantum-vulnerable. Consider migrating to pure post-quantum alternatives as application requirements allow.

● Transition Away: Deprecated by 2030

These libraries use cryptographic algorithms that are being deprecated by 2030 under NIST IR 8547. This includes AES-128, RSA (>1024 bits), and Elliptic Curve algorithms. Plan migration to post-quantum alternatives.

openssl

v3.0.2-0ubuntu1.15

Package URL

```
pkg:deb/ubuntu/openssl@3.0.2-0ubuntu1.15
```

Cryptographic Algorithms

RSA-2048 (Asymmetric Encryption)

[TRANSITION](#)

ECDSA-P256 (Digital Signature)

[TRANSITION](#)

AES-128-CBC (Symmetric Encryption)

[TRANSITION](#)

Found in Files

```
/usr/lib/x86_64-linux-gnu/libssl.so.3
```

```
/usr/lib/x86_64-linux-gnu/libcrypto.so.3
```

Assessment

OpenSSL 3.0 includes RSA-2048, ECDSA on P-256 curves, and AES-128 which are being deprecated by 2030 under NIST IR 8547. While currently secure against classical attacks, these algorithms are vulnerable to quantum attacks. Begin planning migration to post-quantum alternatives like Kyber for key exchange and Dilithium for signatures.

libgcrypt20

v1.10.1-3ubuntu2

Package URL

```
pkg:deb/ubuntu/libgcrypt20@1.10.1-3ubuntu2
```

Cryptographic Algorithms

ECC-Curve25519 (Key Exchange)

TRANSITION

RSA-3072 (Asymmetric Encryption)

TRANSITION

AES-128-GCM (Symmetric Encryption)

TRANSITION

Found in Files

```
/usr/lib/x86_64-linux-gnu/libgcrypt.so.20
```

Assessment

Libgcrypt implements elliptic curve cryptography (Curve25519), RSA-3072, and AES-128 which will be phased out by 2030. These algorithms provide strong classical security but are quantum-vulnerable. The 2030 deadline under NIST IR 8547 requires transitioning to post-quantum cryptography such as Kyber-1024 and ChaCha20-Poly1305.

● Compliant: Post-Quantum Ready

These libraries use 100% post-quantum safe cryptographic algorithms and are ready for the quantum computing era.

bcpqc-jdk18on

v1.77

Package URL

pkg:maven/org.bouncycastle/bcpqc-jdk18on@1.77

Cryptographic Algorithms

Kyber-1024 (Key Encapsulation)

POST-QUANTUM

Dilithium-5 (Digital Signature)

POST-QUANTUM

SPHINCS+ (Digital Signature)

POST-QUANTUM

Found in Files

org/bouncycastle/pqc/crypto/kyber/KyberKEMGenerator.class

org/bouncycastle/pqc/crypto/dilithium/DilithiumSigner.class

org/bouncycastle/pqc/crypto/sphincsplus/SPHINCSPlusEngine.class

Assessment

Fully compliant post-quantum cryptography library. Uses NIST-standardized algorithms (Kyber-1024, Dilithium-5) that are resistant to both classical and quantum attacks. No migration needed.